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In this paper we study a generalized second order resonance=tunneling

N >

ordinary differential equation, (z + iT) ¢"(z) + a¢'(z) - (B] - zB22)¢(z)
where the parameter & is real and positive, a » 0, and allbother parameters
are complex. We have obtained solutions of this eqﬁafion when the independ-~
ent variable covers the infinite domain, == < z < =, and making use of suit-
able integral representations we have determined their asymptotic expansions.

With the aid of their leading terms the two transmission-reflection problems

have been solved. Thus, we show that the expected Budden absorption occurs !
for a = 2N, N =0, 1, 2,.... However, in bands centered about a = 2N + |, the

modulus of the reflection coefficlent is generally larger than unity.

PACS: 03.40.Kf, 02.90, +p, 42.10.-s
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i ’ . In a brief paper in Physical Review Letters! we announced the preparation
‘{f of a lengthier publication containing rigorous proofs of the outlined results.
i: Thus, the present paper is meant to serve the indicated purpose. It is well
4.

A

v known that the propagation of waves through nonuniform media has been the

.ﬁ: subject of broad interest and study in various areas of basic and applied

‘h,

& . . : ;

A physics. We wish to emphasize the two physical effects encountered in such
s

140

- cases; namely, the appearance of cutoffs, i.e., points where the local wave-
2 . )

ot number vanishes [k(z) = 0], and resonance points where short wavelengths
=~ develop [(k(z) * =], In general, we expect cutoffs to result in wave reflec-
‘-".:«

‘i; tion, while resonances lead to wave absorption., Because of the seemingly

[ opposite roles played by cutoffs and resonances, it is of considerable

- importance to investigate model systems in which both effects are present
> simultaneously and in a sense compete with each other; this is the essence of
L)
T~ . .

o resonance~tunneling problems. The prototype equation used to approximate

.x. Iy : . . s .

S physical systems exhibiting such features is Budden's equatlon.2 This second
-\u
o

order differential equation describes systems in which propagation regions

50);

2,

exist on both sides of a resonance, but in which one of the propagation

:u regions also contains a cutoff. An intrinsic property of Budden's equation is
; the fact that, for waves approaching the resonauce (z = 0) from the cutott
- side (z > 0), the modulus of the reflection coefficient is less than unity.
>

T Such a result is consistent with the intuitive expectation than a fraction ot
o

" . . )

‘; the incident wave is absorbed at the resonance, while yet another portion can
L tunnel to the propagation region on the other side (2 < ). The converse sit-
a8 uation corresponds to a wave approaching the resonance from the left (z < )

: and a portion of which is transmitted to the other side (z > 1), where the
‘NG . . : , .

) cutnft exists, while there is no retlection at all. In neither case 1s the

-“' .

~

‘-\,)

uy

[ B

«]

ot

o

~ ) - LRI . el mae N

LR R A ,f S TN AT




v w
Ty
1]

o ey

-

_2_
initial wave energy conserved in Budden's problem as well as in our general-

izea version.

One important feature of Budden's equation is the absence of a first
derivative term., In this paper we have generalized the resonance-tunneling
problem by inserting, in the differential equation, a first derivative
multiplied by an adjustable parameter a which is real and positive, «a 2> U.
When we put a = 0 we recover Budden's equation. We have further generalized
the problem by allowing the presence of dissipation, with the result that all
other parameters in the equation, as well as the independent variable, become
complex numbers. We have solved the generalized equation in detail and
discovered that, as function of the parameter a, the reflection coefficient
exhibits an anomalous behavior; namely, that the expected Budden absorption
occurs for a = 2N, N =0, 1, 2,..., and that in bands centered about a =

2N + 1, the modulus of the reflection coefficient can be larger than unity.

Initially, our motivation for the study of the generalized equation arose
from a specific problem3 (electrostatic whistler waves in magnetized plasmas
with longitudinal density gradients), but having encountered the extraordinary
reflection phenomena described above, we proceeded to carry out a detailed
analysis of the solutions of the generalized equation which we present in this
paper. Thus, in Section 2 we present the basic differential equation, and
then obtain a fundamental set of solutions. In Section 3 we take up the role
of Whittaker's equation to study its behavior close to the resonance (z = 0)
and to investigate, tor a > 0, the small argument leading terms of the
solutions of the generalized equation. In Section 4 we set up integral
representations for the solutions of our basic differential equation. In
Section 5 we compute and tabulate their asymptotic leading terms, which we

need in Section A to compute the transmission and reflection coefticients.
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2. Basic Ditterential Equation

As explained in the Introduction we obtain our basic ditferential equa-

tion by inserting in Budden's equation a first derivative term. Thus, we have

(z + i?) $"(z) + ad'(z) - (3] - 2322)¢(Z) =0 (2.1)

~

which reproduces Eq. (1) of Ref. 1. In (2.1) the parameters T, 81, and B9
are complex numbers with positive real parts and small positive phase angles,
which heuristically account for dissipative processes. In the absense of
dissipation, T vanishes and (B], 85) are positive definite numbers. The
parameter a in (2,1) which is the coefficient of the first derivative ¢'(z),
is real and positive, 0 € a ¢ =, and plays a dominant role in the entire
development of the present paper. Thus, when a = 0 we recover Budden's
equation; when a = | we observe that (2.1) becomes the self-adjoint analogue
of the Budden problem, and when a varies over the whole range, 0 € a < ®; we
encounter the periodic variations, as functions of a, of the retlection and
transmission coefficients pointed out earlier in Ret. | and to be derived
rigorously in the sequel. Note that, as a matter of notation, we employ in

(2.1) the parameter T in lieu ot the parameter Vv appearing in kq. 1l of Rer. 1.

The main purpose of this paper is to present, for the infinite domain,

-» ¢ z < = the analytic and asymptotic properties of the solutions to our

-
’D

-'_".
~
:ff hasic equation. To this end we introduce in (2.1) the following notation:
;' . w=15, 4= 28) (z + i) ; (2.2)

By = 8, + il8y/2, 3, = 81/28 . (2.3
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We recall, from the definition (2.2), that in the absence of dissipation the
parameter B, becomes positive definite and the parameter T vanishes. Hence,
in this limit, § = 2B9z is a real number. Further we recall that in the
infinite domain, - < z { ®, we have arg z = 0 when z > 0, and arg z = m when
z < 0, the latter statement being a consequence of causality as embodied in
the general definition § = 28y (z + iF). Thus, in the presence of dissipation
both 83 and T are complex numbers with positive real parts and (small)
positive phase angles; that is T = IFIeiel, 82 = |lee162, where 0 < 8], 687 <

n/2, from which it follows that, in the general case, arg § * 87, (7 + 67)

as z *+ to,

Furthe.mcre, in what follows, we propose to use w as the independent
variable and we shall encounter that the multivalued functions that emerge
will be expressed in terms of *w = *i§, Thus, at this juncture it becomes of
interest to ascertain the ranges in arg(*if) which correspond to the princi-
pal branch of the functions in question. For the purpose we assume initially
the absence of dissipation, which means that £ = 287z is real and covers the
infinite domain - < £ < =, with arg § = 0 when £ > 0 and arg § = 7 when £ < 0
as shown in Fig. 1, just as in the case of z in the previous paragraph.

First, to determine w = if we swing the real axis in the £ plane through an

angle of 7m/2 in the counterclockwise direction about the origin § = 0, which
makes w = i colncide with the axis of imaginaries as shown by the dashed

line. This procedure shows that the cut in the complex £ plane must be drawn

along the negative imaginary axis, and we deduce that the principal branch for

- a multivalued function of w = i§ is given by the range

- -n/2 < arg (1§) < 3w/2 (2.4)

)
l.‘(‘ 1]
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A Then, to determine -w = -if we must now swing the real axis in the £ plane
b

N

ﬁ\ through an angle of */2 in the clockwise direction about the origin of coor-
ol
i * dinates, which makes —w = =-i% coincide with the axis of imaginaries as shown
3¢

ﬁ' by the dotted line. Hence, the cut in the complex £ plane must again be drawn
N
-\3 along the negative axis of imaginaries, exactly as before, except that this
§._ time we deduce that the principal branch of a multivalued function of —w = -ig
ﬁ;

o is given by the range
o

o -
B,
Rt -7/2 < arg (-1§) < 3m/2 (2.5)
_ij which should be contrasted with (2.4). We observe in Fig, 1 that the cut

:&: along the negative axis of imaginaries separates the dashed and dotted

segments in the lower half plane of w = {£ and -w = -1, respectively, and we

E;. note that the corresponding segments in the upper half plane actually coin-

cide with each other.

v In the presence of dissipation, as we have already seen, we have

- Jl

4"-1 ~ ~ .

7 £ = 282(z + iT), where B2 and T are complex parameters, and asymptotically
[ ™ &
' l. - - 2 :
t) (|z| » ®) this definition becomes & ~ 2Bz, Confining our attention to

f& positive values of z, 0 < z < », we compute the complex numbers w = *if, which
N

f& are shown in Fig. 1 by two black dots equidistant from the origin and lying
-
'oN on a straight line inclined at an angle 07 = arg By with respect to the axis
o of imaginaries. We observe that the transition from w in the upper half plane
i}: to =W in the lower half plane, or vice versa, is achieved by the semicircle
o drawn to the right, which conforms to the convention

]

-

N (=w)a = wd el™a ¢ = gpn Re{w}, (2.6)
RS

ok

o

~ where a is an arbitrary coefficient. In Fig. , the point w is such that
Wi Re{w} € 0 and Im{w} > 1; that is, w is a positive pure imaginary (9 = 0) or
o

o

-

o~
3 \‘i

..l
[ a

@
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else lies on the second quadrant of the complex § plane, with corresponding

statements for the point =w on the lower half plane.

Thus, in making use of w = i as the independent variable in (2.1), we

obtain, writing Y(w) instead of #(z), the generalized equation
WoYT(w) + aY'(w) + (18, - w/4) Y(w) =0 (2.7)

which we proceed to solve in terms of confluent hypergeometric functions.
Putting Y(w) = e‘w/zy(w), it is found from (2.7) that v(w) satisfies the

canonical form of Kummer's equation

wy'(w) + (b-w) y'"(w) - ay(w) =0 (2.8)
with parameters

a=0a/2-1i8, b=a, b-a=a/2+if, . (2.9)

Two linearly independent solutions of (2.8), valid for all possible values of

the parameters (a,b) are"

yS(W) = UCa, b; w), y7(W) = e¥ U(b - a, b; =w), (2.10)

in which U(a, b; w) is a multivalued solution to Kummer's equation for which

the principal branch is usually taken as -7 < arg w < n, Consequently, a

fundamental set of solutions of (2.7) is given by

P _ .
AN XA

kg
T
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Y Yo(w) = e W/ ovg(w) = oW 2 U'(a, h; W) = oW/ U(a/2 - 185, a; W), (2.11)
‘I,
l -

$‘

Ijj Yo(w) = e—w/2y7(w) = W' 2 (b - a,b; ~w) = W/ U(a/2 + iéo, a; - wy, (2.12)

Y in which the latter torms applv specitically to the parameters defined by

\

4 (2.9). It is noteworthy to point out that these parameters (2.9), and the

1 corresponding solutions (..1l) and (2.12) satisty the transtormation

: a(b-)b—a’b(-> b,w*—*—w; (2.13)
¥ |

. that is, Y_(w) as given by (2.11) can be turned into Y,(w) as given by (2.12),
: or vice versa, by merely applying the transformation (2.13).

- For brevity in writing, it is convenient to introduce from (2.9) the
o parameters
¢
) -~

XN ax = af/2 * i85, b = a, (2.14)
::\

iQ with the aid of which the solutions (2.1l) and (2.12) become

a

N Yo(w) = e~%W/2 U(a=, a; w) larg (w)] < m; (2.15)

4: Yi(w) = eW/2 Ulas, a; -w) larg (-w)| < m, (2.16)

o

o which the reader will recognize in Ref., | as Lkgs. (5) and (4), respectively.

It is readily veritied that the parameters (2.1014) and the solutions (2.15) aund

.- (2.1h) satisfy the transtormation (2,.13), l.es, a4 «* a_, X ¢+ 31, W ¢* -w,
ﬁ;' which, with w = i%5, implies that (2.13) can be condensed into a single
-
- reversible transformation 1 ¢€*» -1, wherever 1 appears Eﬁ?)]ﬁlﬁjj}
-
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3. The Role of Whittaker's Equatlon

A e e i

In the sequel we shall oftten rind it more convenlent to deal with the
complex independent variable 5 = 2B85(z + 1T), as derined by (2.2) than with

the independent variable w = 1i

TRAl

. Accordingly, writing Z(%) instead of Y(1%)

in (2,7) vields

SLU(5) + aL'(5) + (54 = 3,) 2(5) = . (3.1)
We can show that (3.1) is related to Whittaker's equation by putting

2(5) = 5732 u(g), (3.2)

where u(§) satisties the Helmholtz equation

u" (%) + w(g) uls) = O, (3.3)
in which
Q(E) = 1/4 = 8,/5 + a(2 - a)/452 (3.4)

plavs the role of an etffective votential and is real in the absence ot dissi-

pation; that is, when T = 0 in (2.3). It is clear from (3.4) that, when a = U
or a = 2, the two cases exhibit identical potentials dominated in the vicinity
of the resonance (% = ) by the anti-symmetric term E‘l. n the other hand,

when a differs from these special values, a signitficant change develops near
the resonance., This time, for O < a { 2, it acquires a symmetric term that

behave s as {‘2 and tor 2 < a { ® the symmetric term becomes -t=2, 1t appears

that the presence ot the first derivative in (3.1) 1s responsible tor this
moditication ot the potential (%) in the vicinity of the resonance and is the

principal reason tor the anomalous reflection properties mentioned in Rer. |1

and 11 the Introduction, proverties that we demonstrate rigorously 1n the

Sequel.




o

el

53O
."4‘-" "

{l H rl
.

|
1
1
o,
LR T

|
)

it 2y
R

3

PR A Y
s S
. '

PR
P S S I PR

«
‘a
gl

-9 -
ulte generally we observe that, when a = 0,2, the equation Q(%§) = U has
onlv one root, namely 54 = 48,, which is the classical cutoft in Budden's

¢gqudtilion, When a is difterent from these two special values, the equation

(%) = v is 4 guadratic and has two distinct roots, S_ and %,, the intercepts

i ~

ot the corresponding curves. It we assume that 180| is large or, more

precisely, that y43321 >> ja(a - 2)!, we deduce that the intercepts are given

appruximately by

~

S— v —ala =2)/48¢;5 S+ % 4Bo + ala - 2)/48, (3.5)

which satisfy the general conditions for the roots of a quadratic,
So 4 Sp = 4By, So % Tho= a2 - a), (3.6)

and which tell us that, under the present assumptions, the cutoff point at

3 =
>

+ = QEO (for a = (,2) 1is shifted only by a relatively small amount as a is
changed., Converselv, we notice trom (3.5) that the cutoff 5_ is relatively
small but greatly dependent on a. Finally, we observe that, when a = 1, which
corresponds to the self-adjoint analogue of the Budden problem, 5_ acquires
its maximum value, l/bgo, while L4 its mininum, ng - 1/450, statements which

imply that 3, is assumed real,

To illustrate the essentlal teatures discussed in the preceding para-

grapns we present in Fig. 2 the curves for ¢(§), as given by (3.4), assuming

~ ~
tor the moment that 3, is real, In this way we obtain, putting 8, = | tor
convenlence, the curves corresponding to x = 0,2, a2 = 1, and a = 3, We observe
that the transition from the case 1 = 1,7}, to either the iutermediate region

-

o< 1 < 2 or tu the extended domain 2 ¢« x < = is non-unitorm. Finally, we

wish to recall that the main thesis ot the present paper is the enhanced
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reflection that we observe in certain periodic bands in a, in which it appears
that the vicinity of the resonance at § = U is stimulated to emit waves
spontaneously. To the best of our knowledge there is no intuitive way of
extracting this periodic behavior from a study of Q(£) from the curves of

Fig. 2 or analytically from the definition (3.4).

Having studied the behavior of the function Q(£), it becomes of interest
to examine the small argument leading terms of the solutions (2.15) and (2.16)

which we rewrite as

Ye(1£) = e*15/2U(as, a; Fi%), (3.7)

~

where, it is recalled, a+ = o/2 * 1§6 and i& 2i Ba(z + iF) = 218z - 28T,

with IZSZF[ << 1. The exponentials in (3.8) thus become

i 8/2 tiB,z
e = e <

= 178,T + .., (3.8)
which, because |82PI << 1, may be equated to unity in a small argument (z =+ U)
expansion. Consequently, we need only look at the Kummer functions in (3.7).

Thus, when a is not zero or an integer (i.e., a # 0,1,2,...), we express

U(a+, a; 7i%) as a linear combination of Kummer functions,® namely:
R L € i) -
U(at, a;, ¥i¢) = Tas —a + 1) M(at, a; FiE)
™ -
+ Ha=-1) (7i8)l~a M(as~atl, 2-a; Fif). (3.9)

l(a+)

To obtain the small agrument expansions for these values of a we replace the
Kummer functions on the right of (3.9) by unity, which is their leading term,

to obtain

P TETRTIT T
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U(as, a; *i5) = y(di(,l_ ; i)l) + f'?‘zxa;)l) (figyl-a | (3.10)
from which we deduce,
for O C a < 1 Y+(i§) = ??géiji—%LT; ; (3.11)
for 1 < a < = Ys(if) = EL%Tizél (sig)l-a | (3.12)

which show that the leading term (3.11) is a constant (independent of 7)),

whereas the terms (3.12) behave as reciprocal powers ot (i%).

When a = U,1,2,..., the formula (3,9) diverges, and we must resort tou a

limiting process that leads to the so-called logarithmic case, ® Thus, 1t we
put a =n + |, n =1,2,..., whence as+ = % (n + 1) * 150, the small argument

leading term becomes

o (n = 1)

Ulas, n + 1; * 1i%) T(as) (*ig)-n (3.13)
from which we deduce, for
~ 1
a=2,n= 1, ar = 1 ¥ iB8,; Y+(i%) * Tad) (rig)~1, (3.14)

in full agreement with (3.12). However, the same formula vields

x 1
a=1,n=0, as = % + 13,5 Ya(if) o W i) (3.15)
a=0,n=-1, ar = * i8,; Y+(i%) “'TffiY 1+ (718) 2 (F15) ), (3.16)

which are the logarithmic results mentioned earlier that cannot be obtained

from (3.12) and do not blend smoothly with the values obtained tor the range

0 < a< l.

PR AN 2"z a X 5 & 8.~
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e The Method of Integral Representations

‘e

W 7

To obtain integral representations ot the solutions, we introduce the

.:"
j{ Laplace kernel K(5,t) = 15t and apply to (3.1) the standard procedures/ that
':f abide when all the coetficients of the various terms of the difterential
v . . A ‘ , .
. equation are at most linear tunctions of the independent variable. Thus, we
N , _ i
NN assert that the integral representations of the solutions ot (3.1) may be
N written as
D
- ife Iy a,-1 a_
z(g) =Afe (t -5) "% (¢ + Ly bae, (4.1)
- ¢ )
;zj where A is an arbitrary normalization constant to be determined a posteriori,
S
ry
S a, and a_ are the parameters of the problem as defined by (2.14), and C is a
- suitable path of integration in the complex t plane, which must be chosen to
L conform with the bilinear concomitant
’
.
o l, a a_ 1ft
P(E,t) = at -5 * (e +%) et (4.2)
o That is, the contour C must be such that P(%5,t) returns to its primitive value
. after t has described a closed circuit, or else the path of integration is
l.'J
-.':.'
b4 drawn between definite limits such that P(%,t) vanishes at each limit. In the
D
o sequel, we assume that the cuts in the complex t plane are chosen along the
..
- real axis; they extend from t = 1/2 to «, and from t = -1/2 to =-». The
o branch points at t = *1/2 cannot be connected to each other by a single branch
r-
}:; cut because the coefficients of the two binomials in the integral (4.l) are
@)
- different trom each other. The reader will readily recognize that (4.1) aud
W
W .
e (4.2) reproduce Egs. (8) and (9) of Ref. L.
o
i
; We have adopted for convenience the latter procedure (the use ot tixed
:\f limits of integration) noting that the bilinear concomitant (4.2) vanishes at
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the branch points t = t1/2, provided we have Re{at} > 0, which excludes
Budden's problem (a 0) that we treat properly later. We also note that
P >0 as |t| » = along a ray inclined (with respect to the axis of reals) at

an angle (%-— ¢), where $ satisfies the condition®

- %-+ ¢ < arg § < %-+ ¢, (4.3)

that guarantees the convergence of the integral (4.l) as [t| grows without

limit; for example, when ¢ = 0, we have - % < arg £ < %, which includes

™
arg £ = 0, and when ¢ = 7, we obtain 7 < arg £ < 2%, which includes arg § = =,

In fact, in the bilinear concomitant (4.2), we choose arg {itt} = v, which is
tantamount to choosing the path of steepest descents, from which we deduce
asymptotically, with arg t ~-% - ¢, that ¢ = arg 5. Likewise, we observe that
(4.3), provided only that the range of ¢ is properly chosen as shown below,

guarantees the basic condition
0<Larg £ <™ , (4.4)

which follows from (2.2) and subsequent discussion in the limit of vanishing

dissipation, i.e., & = 2822 is real.

Accordingly, we define the function Z2,(§) by means of the rectilinear

integral representation

-1¢
1/2+i=e a -1 1 a -1
z,(8) =4a ] eiit(c-%)+ (t +3) 7 dt,
1/2

1
which starts at t = 3 and proceeds to infinity along a ray inclined at an

angle -9 with respect to the axis of imaginaries, where ¢ satisfies the range
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m 3w
-?<¢<—??, (4.6)
which contains ¢ = arg £ = 0 and ¢ = arg £ = © in accordance with the require- .

1
ment (4.4). In addition, we observe from (4.6) that, in varying ¢ about t = 5

the rectilinear path of integration does not encroach upon the other branch
polnt at t = - %5 If ¢ were to be increased beyond the limits stated, it would
become necessary to make the path of integration circle the branch point at

t = - %3 with an additional contribution to the answer which does not belong
in (4.5). Then, if we substitute the specified limits (4.6) into the values
of ¢ in (4.3) we find for arg £ the permissible range -7 < arg £ < 2w, which
contains symmetrically the basic condition (4.4). Finally, subtracting %
from each term of the preceding set of inequalities we obtain the result

- %1 < arg (-i%) < %1, which comprises symmetrically the customary principal
branch =7 < arg (-1§) < 7 for the function U(a4, a; -i£) that we associate
with (2.16) and (4.5). However, as demonstrated in Fig. 1l and accompanying
discussion, the argument range for the principal branch of multivalued
functions of (-1§) is given by (2.5); that is, =-n/2 < arg (-1§) < 3m/2, which
is the range we shall adopt henceforth for the Kummer function U(ay, a; -if),

and which contains the range =-m/2 £ arg (-18&) S_n/Z that corresponds to

(4.4).

To evaluate the integral (4.5), we change the variable of integration

from t to u by putting
1 1 . 1 .
16t = i5(t —7+-2-) =1&£/2 + 1§ (¢t --2-) =1ig/2 - u,

where =u = elm,; ; (4.7)

- lc:
Faal




dt = (el™/i%)du;

t =-%, u=20;t =+ joe 2Py = 1u|eis R m|g!ei(arg £ - ¢3 (6.9)

which states that the upper limit in (4.5) tends to =elB yhere 8 = argf - ¢

and, according to (4.3), 8 is an acute angle, positive or negative,

-2¢s <2
2 7 (4.10)

To proceed with the evaluation of the integral, we insert (4.8) and (4.9) into

(4.5) to obtain

: . e
2,(6) = A (et7/16)?* 1%/2 ]

J

0
= AF(a+)eig/z U(a+,a;—i£)

Ar‘(a+)ei£/2

(-16) ¢ Folay 1 - asy %g), (4.11)

where the result in the second line stems directly from (2.16) and states that
Z4(&€) in (4.11) is proportional to Y4(1€&); that is, Z4(£) = AT(a+) Y+(if),
where the constant of proportionality, Al(a;), arises from the integral
representation itself. The last form in (4.11) is deduced from the first

line, where the integral representation makes use of u in (4.7) as the

[l

variable of integration. Thus, expanding the binominal (1l - u/iE)a-‘1 into a
partial series plus a remainder; interchanging the order of integration and
summation, and integrating term by term, we obtain, accurding to Watson's
Lemma,9 an asymptotic series in the sense of Poincaré, which is condensed in

the last form of (4.11). Here, the function 3F;3 is a generalized hyper-

e 'w o ¢ a a2 &

geometric series written in Pochhamer's notation as modified by Barnes. !0 It
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represents symbolically an asymptotic series in reciprocal powers ot (1£) that

must be terminated after a finite number of terms tollowed by a4 remainder. It .
is recalled that in such series, the remainder is ot the order ot the first

discarded term, and that the functions »F,) have unity as the leading term.

Comparing the last two torms 1n (4.11) leads to the asymptotic relation
U(a a; = 15) ~ (—1‘)—d+ F (a | - a_: L : )
+) ’ > > : ”( *) - _) > (4.1_)

which apparently was tirst noted by Erdelyi in his definition ot the

corresponding Kummer tunction, !

Similarly, the companion tunction Z_(§) is detined by means ot the

rectilinear integral representation

5o -1
L PR L a,l | a -l ,
Z (%) = A < (t - 3) (t + ) Joo, (4.13)
-1/2 - -
which starts at t = =1/2 and proceeds to intinity, as betore, along a ray

inclined at an angle -$ with respect to the axis of 1maginaries, where b

satisties this time the range

-m LT, (Gald)
which has been so chosen because it contalns $ = arg 7 = U and p» = arygy 7 =70

/ 7,

in accordance with the requirement (4.4)., However, this time, when the

rectilinear path ot integration is rotated about t = =1/ sav trom p = 7 to
$ = U, it becomes necessary to mdake the path ot 1nteyration circele the bhranch
point at t = 1/2, giving rise to an additional contribotion which is not

contained in (4.13) and which is part ot the process of analvtic continudtion,
a4 matter to which we return in Section b when we address the transmissyon-

reflection problems that we seek to solve. Proceediny, as betore, 1t we

-/'--
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substitute the specified limits (4.14) into the values of % in (4.3), we find
for arg %, the permissible range =-3n/2 < arg % < 3n/2, which contains the
basic condition (4.4). Finally, adding 7/2 to each term of the preceeding set
of inequalities, we obtain =m < arg (i3) < 2n, which contains the principal
branch - % < arg (13) £ %1 for the function U(a_, 1; if) that we assoclate with
(2.12) and (4.13). Notice that this range contains %-S arg (1%) < 2%, which
corresponds to (4.4), and that it agrees with (2.4), as demonstrated in Fig. 1

and accompanying discussion.

To evaluate the integral (4.13) as before, we change the variable of

integration from t to u, but this time we put

1 1 l
i5c = {5(c + 3 - 7) = -if/2 + if(L + 7) = =-if/2 - u,
in
where —u = e u; (4.19)
im . 1 1 in _ 1 ; u
e u = 13(t + 5), t+5 =e u/ig; 6 -5 = el (] + TE)’
dt = (el™/i£)du; (4.16)
1 1 - i3 i £=
t =-5 u= 0; t = - 7 + iwe ib, u = Iuiel » = ¢|e (arg 02 (4.17)

which implies that the upper limit in (4.13) tends to =ei®, where B = arg 5 - 4

>
is an acute angle, positive or negative. Thus, proceeding as before, we have

from (4.13)

i8
- ’ -y T/ xe a —1 a —1
Z (5) = Aeiﬂ(a b -l—ja' e 15/2 f e VT (1 + .u) + du
- 1g ) ig
a- -15/:
= Aeiv(’x b Mla)e 15/2 U(a-, a;-1£)
in(a-1), -15/2, _ -a- L
~ he r(a-)e (10777 SFylan, 1= ay; - 19 (4.18)
P L e e A e L e e L
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where the expression in the second line stems directly trom (2.15) and states
that Z_(§) in (4.18) is proportivnal to Y_(i§), that is, Z_(f) =
Aei“(“‘l)r(a_)Y_(iE), where the constant ot proportionality, AelT(a=l)r(a_),
arises from the integral representation itself. The last torm in (4.18) 1is
deduced from the first line employing the same methods that led to (4.11).
Here, again, the function F( 1s an asymptotic series in reciprocal powers of
(i§), whose leading term is unity. Finally, comparing the last two results in

(4.18) leads to the asymptotic relation

U(a-, o 15) ~ (1) 777 JF (ao, 1 = ay, = 59) , (4.19)

which should be contrasted with (4.12), and which again is due to Erdélyi's

formulation.!!

To determine the constant A appearing in (4.11) and (4.18), we demand
that the tunctions Z, (&) and Z-(§) satisfy the reversible transformation

(2.13). That is, in accordance with the last sentence of Section 2, we demand

that Z,(%) = Z_(%) and 2-(§) = Z4(t), where a bar over a symbol signifies that
we have imposed the reversible transformation i +* -i, wherever i appears

explicitly. Thus, since the normalization constant A is arbitrary, we put

A = e—in(u—l)/Z ’ (4.20)

which, when inserted into (4.l1) and (4.18), yields the results
- e—Ln(a - 1)/2

7 (%)

i5/2
- . . oir
. F(a+)e U(a+, a; =if%)

-im(a=-1)/2
e

Tade " 7(-19) " F (a,, 1 - a_;
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a- 12 -5/ |
L5y = T T DA 5T gy 1)
in(a=-1)/2 n £/2,. - 1 .
S AT e G e, L s 1) s (4.22)

that clearly satisfy the reversible trausformation i <+ -i.

When a = 0 in (2.1), we recover Budden's equation, and the parameters of

the problem become a: = * igo, which means that the integral representations
(4.5) and (4.13) cannot be used because the restriction Re{a+} > O is being

violated. To obviate this difticulty, we make use of the identity12
U(a,0;w) = wU(l + a,2;w), (4.23)

which allows us to write down the required solutions for a = 0 with the aid of

(2.16) and (2.15), respectively. Thus, we have

/

2,(8) = = 1l(1 + iEo)eiE 2U(iEo, 0; -i&)

&/

-iT(1 + i?so)e1 24Eyu(1 + iEO,z;-is)

/4

. o~ i£/2, . -iB s I o
-ir(1 + 1Bo)e 5 (-18) o 2E0(l + 180, iB _; T?) H (4.24)
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~ -1 f ~
z (&) = il(l - i8 )e 1’/2U(—180, 0; 1£)
~ -i £ ~
= iT(1 ~ iB )e L8206y - i8 , 25 i£)
~ara = 1B 2an o e - B, 8 - 1 (4.25)

which should be contrasted with their counterparts (4.21) and (4.22) valid tfor
a > 0, and in which we have made use of the Erdélyi asymptotic relations

(4.12) and (4.19), respectively.

The most important results of the preceeding paragraphs are illustrated
graphically in Fig. 3. Thus, Figs. 3(a) and 3(b) depict the t plane and
emphasize the rectilinear half-ray paths of integration for the functions
Z+(F) an . Z_.(%), respectively, which we have chosen to draw, in the absence of
dissipation, parallel to the axis of imaginaries. That is, making sure that
in both cases the causality condition (4.4) is preserved. This is
accomp ‘ished by exhibiting the points $ = arg § = 0 and 9 = arg £ = 7 on the
paths of integration, and joining them by semicircles drawn to the right of
the vertical axis as part ot the unit circles which correspond, respectively,
to the limits (4.6) and (4.14)., Figs. 3(c) and 3(d) represent,
respectively, the full argument ranges tor (-1%5) and (i%), which are the
Arguments appearing in Z,(%5) and <-(%5). In addition, the portions ot the
spirals drawn with thies lines represent the respective rdanges corresponding
to (4e3), leed, 0 <arg 5 <« M. In the presence of dissipation, as shown 1n

2o2) and subsequent discussion, the bhasic argument range (4.4) becomes, as

+ m, where D2 = ary 8). The diagrams

)
Pl

2 grows without limit, 39 ¢ arp € < 8
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of Figs. 3(c¢) and (3d) can be readlly adjusted by simply dadvancing the thick

portions of the srirals by an angle 65,
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5. Asvmptotic Leading Terms

In this section we are concerned with the tabulation of the leading term
asymptotic expansions, expressed as functions of 1§ = 2i8(z + i?) and
eventually as functions of the physical independent variable z, == { z < =, as
was done in Ref. |, The former objective is achieved by replacing the
tunctions Fy by unity. Thus, from (4.21) and (4.22), we have the asymptotic

leading terms with simplified normalization factors:

2,0 ~ 17 yelH By (5.1)

(1-a)

2 (5) ~ - Fla_de "1 5(1e)™ %, (5.2)

: 3 a ~ .
which are valid tfor the parameters a, = 7 t 180 and a > U. In the case of

1 = 1, Budden's problem, we obtain the asvmptotic leading terms
~ .C/ —.~
2 (5) ~=1T(l + 18 )el“’z(-ii) 18 ; (5.3)
+ o
~ -€ i3
< = 18 e et (5.4)

In both pairs of equations the adopted notation means that the subscript plus

in Z4(7%) 1is associated with progressive waves, whereas the subscript minus in
£-(%) with regressive waves. This wave character of the preceeding solutions
is evident asymptotically; i.e., for iiil >> 1, where, it is recalled,

= 28)(z + iF) in which 82 and T are complex parameters. In the absence ot

dissipation, 2y is real and positive and [ vanishes; therefore in this case,

5= 23,2 is real.

2
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First, we examine to what extent the presence oI dissipation aftects the
asymptotic leading terms listed before, especially as regards the powers of
(i§). For the purpose, we assume temporarily that z = [z|, which is positive

definite, and define from (2.2)

3= 28,1z, n

1l

23,7, (3.5)

“
which makes £ a complex number with positive real part and small positive
phase angle; i.e., Im{i5} > U because arg I = arg 85. With this understand-
ing, e.g., the computation of the power (i%)78, where a is an arbitrary

exponent, real or complex, becomes

(1™ = WE-m2=uH? -
i
=D L+ s anT (5.6)
iE

which is valid to lowest order in reciprocal powers of (ig) because n = ZBZF
is a constant. Finally, according to the definitions (2.2) and (5.5), when

z > U, we have £ = &, and when z < 0, then § = -£,

Next, we recall that the confluent hypergeometric functions employed in
(4.21) and (4.22) for a > U, as well as their counterparts (4.24) and (4.295)
for @« = 0, are multivalued functions. Their principal branches, as
demonstrat: | in Fig. | and accompanying discussion, are given by (2.5) and

(2.4), respectively, which accounts for the adoption of the convention (2.6),

and which for our purpose we rewrite here as follows:
(—w)C = wCe~1TEC, ¢ = spgn{low} , (5.7)

where ¢ 1s an arbitrary exponent. We propose tn apply this rule to compute

- v
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the powers (-1£)7%+ and (15)-a_ which appear in (5.1) and (5.2). Thus, when
Im{i&} > 0 in (5.1), we have € = 1 and (i) 2+ ~ (-12)'a+ according to (5.6),
whence

(-15)78+ = (13)—a+eiﬂa+; e1Tra+ = ein(a/Z *id) 1 e—nSO , (5.8)
and when Im{if} < 0 in (5.1), we have simply (-i£) 3+ ~ (iE)73+, Similarly,
when In{if} > 0 in (5.2), we have (if) 2~ ~ (1€)™-, and when Im{if} < O,

we have € = =1 and (i) 2~ ~ (-1%)78-; ie€e,

(~13)"8- = (1F)78- ooima-. miman | -im(a/2 = iBy) | o -mEo | (5.9)

In (5.8) and (5.9), we still have to compute the powers (1E)'at, where

a ~
as+ = 5-:130. Thus, we have

(1F)72% = gmartn(18) | =(a/2 + 1B)n(18) _ (152 "Bo/2 - 1§oan; (5.10)

(1E)—a_ - e—a-zn(ig) - e-(a/2 - igb)ln(ig) - (ig)—a/Z e—n§6/2 + iEoan_ (5.11)

The logarithmic terms in the last exponentials in (5.10) and (5.11), when
combined eventually with etig/z, are asymptotically (E + =) negligible and
they are frequently omitted. Here, however, we retain the logarithmic terms

for completness sake.

Hence, combining the results of the two preceding paragraphs with our
basic leading term asymptotic expansions (5.1) and (5.2), we may now tabulate
the asymptotic values of Z4(%) and 2-(%) for Im{if} > 0 and Im{i%} < 0, which
1s equivalent to saying z > O and z < 0, respectively. Thus, we cbtain the

four expressions:

PESL L PAISINE WA « b VR IY
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3.2, =2 i5/2=-13 :
OfTI(iE) e : (5.12)

» a’a
r

(l-a)
i

Im{ig} > 0; 2,(8) ~ raglie”

-
3
o P

ol
’

S

~

PR
< te e

- n8., /2, o~ o—a/l 15/2-13 ,

: m{1g} < 0; z,(5) ~ 117 r@a e B hy )TV R ST (5.13)
‘ (1-a) 78,/ Tt

' - -8 /2, ol -1%,l+12, 7 ,
i~ Im{i£} > 0; 2 (&) ~ =it ¥ r(a (e P/ f (i) Y LTt AN (Sela)
X
03 : 3 onl

(l-a) . - =3WB 2 =i—ay Y =i 243 A0t L .
Im{1€} < 0; 2 (&) ~ =181 ™™ r(a )17 % 3B Ly )T H S B g g,

;? in which the first two represent progressive waves and the last two regressive
,? waves. The given limiting forms are valid for all positive values of the

o
28 parameter a, 0 < a < », For Budden's problem corresponding to (5.3) and
O]
‘:; (5+4), we put a = 0 everywhere except in the normalization factors were we put
.~‘
’,5 a = 2 in accordance with (4.23).
ol
4
‘f{ To conclude this Section, we extract from the preceeding equations the
o spatial dependence of the wave functions of unit amplitude, namely:
173
[}

%O

5.(5) ~ (1)"Y 2 15/2mi80tnE | (jzymag 19/2

- +7 > (5.10)
L0

oo
e - -
[~ ~~af2 ~i5/2+i8 £ - - -if

S b_(8) ~ (1E) W 2HE/ 2 Botnt  (gyman 182, (5.17)
fi, which equally well may be expressed as functions of the real indepeandent

- variable, =® < z < ®, albeit no longer of unit amplitade,; that 1is:

@i
N ’I‘ ~

N ay | -ay 182-87

o 5,(2) ~(218,)70% |g| ToetB TR (5 1%)
wrls

WA

S

A

Z b_(2) ~(218,)73" |g| Ao 7B LT (5.19)
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which are the functions that supplant the forms given in Eqs. (7) in Ref. Il.
It is important to reiterate, for both pairs of equations, that as = a/2 * igg,

S = 287(z + iT), and £ = 287|z|, where arg £ = arg B2 > 0.

Finally, to conform with the nomenclature introduced in Ref. I, we
present in Fig. 4 a diagram indicating the directions of propagation of the
four asymptotic leading terms for Z2+(&) and Im{i%} 2 0, which are associated
with the unit amplitude wave functions (5.16) and (5.17). That is, in the

spirit of Eqs. (7) of Ref. 1, we have

5, () ~ (17)~(a/2-180) -18/2 (5.20a)
5,(5) ~ (17) (a/2418,) 1872 (5.20b)
8,(5) ~ 15y 2riBo) i (5.20c)
5,(5) ~ (13)"(W/2-185) ~18/2 (5.20d)

It {s seen from Eqs. (5.20) that, when a > 0, there is introduced a decaying
envelope of the form E—a/2 = (280|z|)-a/2, or conversely, it can be inter-
preted (asymptotically) as an enhanced swelling of the wave form toward the
resonance, which we associate with term E— in the effective potential (3.4).
It is worth noting that the swelling disappears when a = 0, which is Budden's
problem. In addition, it is pertinent at this juncture to emphasize that the
exponentials in (5.20), exp{*i§/2} = exp{tiﬁzz ¥ BZF}, contain the constant

attenuation factors exp{IBZF} = exp{¥¥n/2} in accordance with the definitions

(2.2).
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The connection that exists between the unit amplitude wave functions
listed in (5.20) and the actual asymptotic solutions Z4(£) that we derived for
In{if} 2 0 is as follows: the progressive waves $7(£) and ¢3(5) are contained
in the functions Z,(§) defined by (5.12) and (5.13), respectively; similarly,
the regressive waves $;(£) and ¢,(f) are contained in the functions Z_(%)
given by (5.14) and (5.15), respectively. The multiplying coetticients in
these equations, as we shall see, are of the essence in the computation of the

transmission and reflection coefficients that we undertake at once.
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Ez 6. Computation of Transmission and Reflection Coefficients

J
! The computation of the reflection and transmission coefficients associated )
.i: with the leading term asymptotic forms for the solutions Z+(£) of our

u&i generalized equation (3.1) is conveniently carried out by resorting to the

;;4 integral representations that we derived in Section 4, and by applying the

:i method of analytic continuation. This means, with reference to Fig. 4, that
Eé we first set up asymptotic transmitted waves of unit amplitude, (&) for

:f‘ z > 0 or ¢4(8) for z < 0 {cf. remarks preceeding (5.12)), and then we proceed
‘;j to seek their analytic continuation as z changes sign. In what follows we

f; shall assume temporarily that & = 289z is rigorously real and covers the

: infinite domain, =-» < § < =, Accordingly, the four half-ray rectilinear paths
'5? of integration defined by (4.5) and (4.!3) may be drawn for convenience as

2 strictly vertical in the complex t plane, as shown graphically in Fig. 3.

7“ First we consider the left to right case of Fig. 4 and then making use of
;;i (4.5), we draw the diagram of Fig. 5, which illustrates the two rectilinear
::E paths of integration corresponding to Z,(§ > 0) with ¢ = 0 and Z4+(§ < 0) with
g
({_ ¢ = 7, and indicating that their unit amplitude wave functions are $2(£) and
\Ej $3(£), respectively. Thus, as stated in the preceding paragraph, we identify
jgj the linear path of integration for Z,.(% > 0) as the transmitted wave for

.g. z > U, The analytic continuation of this solution for z < 0, which is the

viE incident wave Z4(§ < 0), is obtained by rotating the half-ray path of

YR

Ex integration clockwise about the branch polnt at t = 1/2, as indicated by the
.', (directed) semicircle on Fig. 5. This procedure is dictated by the unit

i; circle in Fig. 3(a), which shows that the transition from b = qrpy 5 = 1) to

és $ = arg z = 7 is achieved by means of the thick semicircle to the right ot the

.
v

vertical. Further, this procedure implirs an excursion into another sheet

_.’-'u

o

<
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o

3

.

e of the Riemann surface, which we indicate in both Figs. 3(a) and 5 by

)

:ﬁ drawing the path for Z,(& > 0) as full line, and the path for Z4(% < 0) as
dashed line. The transition from the incident wave $3(%) to the transmitted

wave ¢2(5) is effected by means of an infinitesimal semicircle traversed in

the counterclockwise direction about the branch point at t = 1/2, which

introduces the factor exp{in(a/2 + ia))} that we identify below as the

reflection coefficient.

Hence, Z4(%) is 1its own analvtic continuation as we change the sign ot z,
and in the left to right case of Fig. 4, there is no reflection, a result
also found in the Budden problem (a = 0U)., Thus, the reflection coefficient
for ¢3(&) going into $4(£) vanishes identically for all a, Kijg = J. To
compute the transmission coefficient T3) from 3(5) into $4(%) quirte
generally; that is, in the presence of dissipation, we first recall tfrom the
discussion that follows (5.20) that the unit amplitude wave tunctions (5.1h)
and (5.17) now exhibit the attenuation factors et“/z, and then we take the
ratio of coefficient of ¢,(£) = 47(%) in (5.12), the transmitted wave, to the
coefficient of 4,(f) = ¢3(%) in (5.13). Hence, taking due account of the

attenuation factors just mentioned, we obtain

(l-a), roa -3 /2, /2 1 -"5. i
i fla)iie "o 7 e a -rg (b.l)
13,7 = - S ST
< - /,Z‘ - .2 "-.
1(1 G)r(a+)[eﬂ30. Do n/ eva‘)/

which is completely equivalent to the tactor alreadv given, and which shows
. i ima
explicitly the periondic dependence on 1 through the phase tactor 1 = ¢ .

Thus, for Budden's problem (2 = 0), we recover the well-known vesalt

T = e O (hal)

.
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and for the self-adjoint analogue of Budden's equation (a = 1), we obtain

T,, = ie . (b.’j)

Notice that all three values of the reflection coefficient T3 given above are
contained in the factor exp{in(a/2 + igo)} that arose from the infinitesimal

semicircle about t = 1l/2 when traversed in the counterclockwise direction.

Next, we consider the right to left case of Fig., 4, i.e., the incident
wave ¢](%) approaches resonance from the tunneling side (z > 0) and, as we
shall see, gives rise to a transmitted wave ¢4(E) for z < 0 and a reflected

_ 2niay4
wave =(l - e ) $2(%) for z > 0. Thus, proceeding as before, we make use
ot (4.5) and (4.13) to draw the diagre of Fig. 6 illustrating the three
rectilinear paths of integration corresponding asymptotically to the incident
wave Z_(§ > 0) for ¢ = 0, the transmitted wave Z_(& < 0) for ¢ = m, and the

2"ia+
reflected wave =(1 - e ) Z4(5 > 0) for ¢ = 0 and ¢ = 27. We have
identified the rectilinear path of integraton for Z_(§ < 0) as representing
the transmitted wave for z < 0. The analytic continuation of this solution
for z > 0 is obtained by rotating the half-ray path of integration

counterclockwise about the branch point at t = -1/2 as indicated by the

(directed) semicircle in Fig. 5. This procedure is dictated by the unit
circle in Fig. 3(b) which shows that the transition from $ = arg &§ = 7 to

3 = arg % = U is achleved by means of the thick semicircle to the riyht of the
vertical. In so doing, however, we cannot ignore the presence ot the branch
point at t = 1/2, with the result that the proposed detormation of the path

of integration yields the incident wave Z2-(% > 0) from (4.13) with & = U, plus

the reflected wave from (4.9) with & = 1) and % = I71, which we write as

N -'_ - - - -'4.’ .'-< . - B
IR N W TN AP, N R T N . A .
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)-
W 27ia,. ., . , , S ) :
e -(l = ¢ ) Z4(5 > W), Here a, = a/2 + 1B, is the exponent associdted with
l. the branch point at t = |/2. We observe that the contour of integration tor
- the reflected wave is represented in Fig. 6 by a solid halt-line transversed
2 downwards, an intinitesimal circle around the branch point at t = 1/2
. traversed 1n the counterclockwise direction, and a dashed halt-line traversed
\
-. upwards in another sheet of the Riemann surrace. We also observe that the
',
-.: — . . - :
- transition trom the incident wave function Z_(% > U) to the transmitted wave
B
"-’ tunction 2_.(%5 < U) is effected by means of an infinitesimal semicircle
O traversed in the clockwise direction about the branch point at t = -=1/2, and
" piving rise to the factor exp{=iT(a/2 - i8,)}. Based on the results of the
;. nreceedinyg paraygraph, we identify this factor with T4, the transmission
- . coetticient trom 51(5) into $4(%5); that is,
- . -1 —Wg ’
. 1" = 1 o [0} y (b.-‘)
. 1 s
’
&
Jtiteot 15 the complex conjapate or (6.1) 1n the absence of dissipation, when
2. 1~ redl. As hetore, we consider two cases. For Budden's problem we put
‘) t = 10 (hew) Uy obLaln
S ~13 .
- ' - . o (be5)
E !
o
‘, ~tle s Budden's result oand is identical to (Aol). For the selt-adjoint
Ji'
i‘_ 1al e of Budden's equation, we pur oy = 1 o1n (hod) to yield
o _3
.’ !" = = e BN (hoh)
P4
o~ Sl 1 The ooy lex condagate of (hg3) whien 205 redal.
- )
-_:.
.":'/'
.
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We have shown that the computation of the transmission coefficients T3y
and T), emerges quite simply from the contours of integration and does not
necessitate a detailed knowledge of the asymptotic solutions given by the
integral representations. The same statement, however, does not apply to the
computation of the reflection coefficient Rjp. 1In fact, we must proceed as we
did originally with the computation of the transmission coefficient (6,1) in
which we included dissipation and, making use of the conclusions following
(5.20), we took cognizance of the fact that the unit amplitude wave functions
(5.16) and (5.17) now exhibit the constant attenuation factors e*N/Z,
respectively. When computing transmission coefficients by taking ratios of
the pertinent coefficients in (5.13) - (5.15), we find that these factors play
no role because they cancel each other. However, this is no longer the case
when computing the reflection coefficient Rjj. Thus, we must include in

addition to the factor -(1 - e2“1a+) shown in Fig. 6, the ratio of the

coefficient of (%) = $3(%5) in (5.12), to the coefficient of ¢_(&) = ¢1(%)

in (5.14), and we must take due account of the constant factors ein/Z, which

arise in the presence of dissipation. In this manner, we obtain

(1-a) (.o =8 /27 -n/2
e i r(a,) [i% "0/ “le
—(1 - eiTiasy +

w
i

12 ~
—i(l-a)F(a_) {e—ﬂﬁo/ZJe—n/Z

o F(a/Z+iBO) ii

i _ einae—ZnBO]e-n
T(a/2-i8 )
o)

» (U< ad =), (6.7)
which is formally identical to Eq. (10) of Ref. |, except for the fact that
here n = ZSZF, whereas previously we wrote v instead of F. From (6.7), we can
deduce the special case corresponding to the self-adjoint analogue of Budden's

equation by putting a = l; that is,
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. (L 180) =173, ="
Ry, = -1 —— L+e T e, (0.%)
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O
in which iRlli > 1 unless n is extremely large. Finally, tor Budden's case
(a = (), we observe that we mav put a = 2, or else a = U, in all terms ot
(n.7) to obtain the equivalent forms?
(L + 1B ) o T(i8 ) -
qu - - [1 - o ™0 e"'] __.___f)\ _ [l _ =218, e'W , (6.9)
- T - i r(-
(1 130) ( 130)

in accordance with Budden's original result, but now showing the explicit role
of dissipation through the complex parameters %) and n. Notice, furthermore,

that in (6.9) we have Ingl < | under all circumstances.

The must unexpected result of the present investigation is the discovery,
enbodied 1n tq. (6.7), that the reflection coetficient R|) exhibits an
anomalous behavior as a tunction of a. To study this etfect more thoroughly

and to simplity the computations, we contine our attention in further remarks

tn the case ot no dissipation; this means that in (6.7) 80 = 80 = 81/(28))
C
is real and 7 = 23,7 = U, Hence, we deduce that
s
. -47 -2
,&l)|2 =1+ e 3o - 2cos(an)e 2730 , (po10))
| ~!
which shows that the square of the modulus of the reflection coerticient,
Ry 2, nscillates periodically as a 1s varied, 0 < a < @, The smallest
N, , . . . \ =ang
retlection occars ftor v = 2Ny N = 0,1,2,+¢., which is min ]RlZi =] - ¢ o,
whereas the maximun retlection takes place when a = 2N + 1, N = 0,1,2,..., and
. -2n3
attains the value maxRyy] = 1 + e 0, which 1s greater than unitv. This
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enhancement in the reflection coefficient indicates that there exist bands of
values of a within which the resonance spontaneously emits waves. The onset

for stimulated emission is obtained from the condition
ITia]2 + IRp212 =0 (6.11)

from which, making use of (b.4) and (b.10), we deduce the equation

2cos(an) = 1 + e-ZﬂBO , (6.12)

whose roots determine the values ot a at the edges of the emission bands. We

note further that

-2
R, (0 [2 = [£,,(0)12 + 4 sin?(ar/2)e "%, (6.13)

which indicates that except for the values a = 2N, N = U,1,2,...,

corresponding to the minimum reflection, the result of putting a # 2N is to

enhance the reflection coefficient above the Budden value, IRlz(U)iz.

In summary, the presence of the first derivative term a¢'(z), U < a < =,
in the generalized resonance-tunneling equation (2.1) that we have constructed
from the well-known Budden's equation, can yield both absorption as well as
stimulated emission of waves, depending on the periodic band conditions on a
that we established here. It would be interesting and challenging to find

examples of physical systems where such a behavior occurs.

This work has been supported by the Office of Naval Research.
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Sl Floure Captlons

Figure l. The lines *if in the absence ot dissilpation and tne branch cut along
the negative axis of imayginaries. The inclined line through the

origin accounts for dissipation when [zi » =,

Figure 2. Behavior of the potential (&), as detined by (3.4), as a tunction

of £ tor B8, = 1, and for three typical values of a.

Figure 3. The t plane for the integral representations of the functions Z,.(%)
and Z_(%); the unit circles employed to implement the ranges (4.6)
and (4.14) in the angle b, and the corresponding argument ranges for

the variables (+i9).

Flgure 4. ‘walitative sketch indicating the direction of propagation ot the
unit amplitude asvmptotic wave tunctions given by Egs. (5.20), as

well as the relative location of resonance and cutotf.

Figure S. Kectllinear paths of integration for Z,(5) when 4 > U and 5 < J. An
asvmptotic unit amplitude wave $4(%) approaching the resonance
directly trom z < 0 (Fig., 4) and resulting into an asymptotic

transmitted wave $4(%) for z > 1.  There is no retflection in this

CASe Tor anv 1 > {,

Figure

o
.

Kectilinear paths of integration for 7Z_(5) when 5 > i1 and % < i1, and
the contour of integration ahout the branch poiant at t = |2

tnvolving 7405 » ). An asveptotic unit amplitude incident wave

51(%) approaching resonance from the tunneling side 2 > 0y gives
rise to an asymptotic transmitted wave b,(5) tor 2z <« o plus a
: : 2mia .

S reflected wave —(] — e +)5,(3) Lor 7z > o,
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